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1 Introduction

1.1 Uncertainty in machine learning1

Over the last few years, the quality and accuracy of machine learning and deep learning models have
dramatically increased. This is mostly due to the ability of training neural networks efficiently.
Given this success, people started introducing neural networks as part of the decision making
pipeline, sometimes substituting traditional Bayesian techniques. However, the output of modern
neural networks is usually a point estimate of the prediction and there are no methods to measure
how confident the network is in giving that prediction. This is in contrast with Bayesian techniques
that model also the uncertainty of parameters and predictions.

Understanding what a model does not know is a critical part of many machine learning systems,
especially because machine learning algorithms are already having an impact to our everyday life.
When we are using and deploying these models, it would be quite necessary to know whether the
model is certain about its output. This allows a human to intervene for clarification when the
model is not sure about its answer. Therefore, there are a lot of advantages from being able to
quantify the model uncertainty for different applications. For example, if we train a model to
classify images of dogs and cats, when the model gets a cat image as input, it should classify it
as a cat with rather high confidence. But what should happen if it gets a duck image as input?
We should expect that the model returns a “random” prediction but with very low confidence, or
equivalently, with high uncertainty. This is an example of out of distribution test data. Indeed,
the trained model has been trained using cats and dogs images and it learned how to distinguish
among them. But an image of a duck would lie outside the data distribution used to train it.

Uncertainty plays a fundamental role in deploying an AI system in domains that can become
life-threatening to humans. These go under the umbrella of AI safety or safe AI, which is concerned
with the safe deployment of AI systems in real-time settings. It includes automated decision making
and recommendation systems in life sciences and medicine and autonomous control of self-driving
cars and critical systems. Indeed, in all these fields are quite important to say how much the
model is confident about its estimate. For example, when a doctor or physician advises a certain
treatment to a patient, the patient relies on the confidence of the expert that analyzes his medical
record. If you want to substitute this last process by an algorithm there are a lot consequences
that one should take into account. Having an algorithm with a high accuracy that outputs a single
estimate results in a high bias on the judgement of the expert. For example, if your model gets
an out of training distribution test example, it would predict something unreasonable, resulting
in a bias for the doctor. Having a measurement of the uncertainty of the model in that specific
prediction, can help the expert to understand when the model does not fit the test data and hence
will predict at random.

Besides safe AI, there are a lot of applications that rely on uncertainty to be able to learn from
small amounts of data. The common problem in those scenarios is that collecting and labeling
training data or evaluating them is expensive or time consuming, therefore an efficient exploration
of the input space is needed. These applications include Bayesian optimization, active learning,
K-bandit problem, and reinforcement learning. In this course we will focus on the first two.

In addition, uncertainty plays an important role also for training and selecting a machine learn-
ing model. Indeed, knowing if the model is over-confident or under-confident can help to get better

1This section is inspired by the first chapter of Yarin Gal’s PhD thesis “Uncertainty in Deep Learning”.
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performance from it and, at the same time, if we have trained different models, having insights on
the uncertainty, can help in deciding the model that best describes the data.

1.2 Problem setting

In order to motivate the importance of measuring uncertainty we should recall the regression
problem. Consider a training set of N D-dimensional observations {x1,x2, . . . ,xN} together with
corresponding target values {y1, y2, . . . ., yN}. A typical assumption in regression, is that the target
values are the result of the a deterministic function of the input (which will be what we are trying
to learn) and an additive noise term:

y = g(x) + ε (1)

Since the goal is to learn a model to make predictions ŷ for new, unseen points x̂, we are in-
terested in approximating the true generative process g(x) with a model f(x,w) that should be
able to capture the shape of the true function g(x), where w is a vector of parameters of our model.

In the usual linear regression setting, we have assumed that the output is given by a linear
combination of the input features:

f(x,w) = w0 + w1x1 + . . .+ wDxD = w0 +

D∑

j=1

wjxj (2)

Notice that the model we defined above is linear in terms of both the parameters w and the
data xi. This implies that the set of functions that we can fit using this model is restricted to
lines with different slopes. Therefore, we usually consider a non-linear transformation of the input
features. This results in modeling the output as a linear combination of fixed non-linear functions
of the input variables, given by

f(x,w) = w0 +

M−1∑

j=1

wjφj(x) (3)

where φ1(x), . . . , φM−1(x) are M − 1 basis functions. In this case, this is still a linear model with
respect the parameters w, but not the data2. Therefore, if in the following notes, when we are
referring to non-linear regression, we are referring to perform regression using a model that is not
linear with respect the data. but that is still linear with respect to the parameters. It is usually
convenient, when implementing these methods, to define

φ(x) =




1
φ1(x)

...
φM−1(x)




so we can write the non-linear (w.r.t the data) regression model in a more compact way:

f(x,w) = φ(x)Tw

where w = [w0, w1, . . . , wM−1].
The problem with this classical approach for performing regression when the data is non-linear

is that it typically returns only one function, the one that best fits the training data. This function
will return a single estimate for each test point and we cannot measure how confident the model
is in its predictions (see Fig.1 which compares the usual non-linear regression with a probabilistic
approach that gets the confidence interval for its predictions). But what would happen if we ob-
serve more data? Is this function still good? And what about the other functions that fit the data
pretty well? Might one of those become a more appropriate fit of the data better if we add new
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Figure 1: Different approaches for solving the same non-linear regression problem. The dataset is
created using seed= 32 and y = 0.2−0.3x+0.5x2−0.1x3 +0.05∗np.random.rand(). (Left) Usual
non-linear regression using basis functions φ(x) = [1,x,x2,x2]. We can see that the result is a
single function that fits the data. (Right) Probabilistic approach that returns a mean prediction
function and posterior intervals. We can notice that the model is confident where there are training
points, but it is uncertain in region where there are no points.

training points?

As we are going to see in this first lecture we can solve the mentioned open problems using
Gaussian Processes. The usual definition you can find in most books and blog posts is that “A
Gaussian process is a probability distribution over functions.”. This probabilistic method provides
an alternative approach to regression problems where there are potentially infinitely many functions
that can fit the data well as we have seen above. Gaussian Processes assign a probability to each
of those functions and the mean of this distribution is the most probable fitting of the data. Since
this is a probabilistic approach, a Gaussian Process measures also the confidence of the prediction.
They can be used also in the classification setting, but this is beyond the scope of this course.
These notes aim to introduce the mathematical intuition of Gaussian Processes by presenting the
concepts both in a more intuitive way and in a more mathematical one. We will start by recalling
the Gaussian Distribution, in particular focusing on the Conditional Gaussian Distribution, which
is at the core of Gaussian Processes. Then we will go through a proof that the assumption made
by Gaussian Process is a plausible one and then we will focus on Gaussian Process regression. We
will introduce a method to build the distribution over functions and we will present how to obtain
the posterior distribution to make predictions.

2 Multivariate Normal Distribution

We first review the definition and the properties of the Multivariate Gaussian distribution. A
D-dimensional vector x = (x1, x2, . . . , xD) is said to be multivariate Gaussian distributed if all
linear combinations of x are Gaussian distributed with some mean (m) and variance (v):

y = aTx = a1x1 + a2x2 + . . .+ aDxD ∼ N (m, v) (4)

for all a ∈ RD, where a 6= 0.
The multivariate Gaussian distribution of the vector x is usually denoted by x ∼ N (µ,Σ).

µ is a D-dimensional mean vector that describes the expected value of the distribution and each
component describes the mean of the corresponding dimension. Σ is a D ×D covariance matrix,
which describes the variance along each dimension and describes the correlation between all the
random variables. It is a symmetric and positive semi-definite matrix. The diagonal consists of
the variance σ2

i of the i−th variable, while the off-diagonal elements σij for i 6= j represent the
covariance between the i−th and j−th variables.

2Sometimes people refers to this model as doing non-linear regression, but this is still a linear model with respect
the parameters.
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A multivariate Gaussian has the following probability density function:

N (x|µ,Σ) =
1

(2π)D/2

1

|Σ|1/2 exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
(5)

where |Σ| is the determinant of Σ.
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Figure 2: Example of the probability density function of a 2-dimensional Gaussian distribution
N (µ,Σ), where µ = [0, 0] and Σ = [[1, 0.4], [0.4, 1]]. Above, it is plotted as function of x = [x1, x2],
whereas below we can see the same distribution as a contour plot.

There are two main reasons why the Gaussian distribution is frequently used in machine learning
and statistics when we try to model real data. First, the Central Limit Theorem justifies their
use in modelling noise in data. Indeed, we assume that the observations we are working with
are usually corrupted by noise, i.e perturbations affecting the measurement process. In general,
noise can be considered as the result of the action of different independent random variables.
The Central Limit Theorem tells us that, in some situations subject to certain mild conditions, the
sum of independent random variables results in a new random variable whose distribution becomes
increasingly Gaussian as the number of variables in the sum increases. The second reason is that
Gaussians have nice analytical properties that make it easier to manipulate them, as we are going
to see in detail. Those allow us to write integrals that involves Gaussian distributions in closed
form.

2.1 Conditional and Marginal Gaussian Distribution

An important property of the Gaussian distribution is that its conditional and marginal distribution
are still Gaussian. Therefore, we can compute the mean and the covariance matrix in closed form.
Consider our D-dimensional vector x ∈ RD with Gaussian distribution N (x|µ,Σ). Suppose that
its variables have been partitioned in two sets xa, that contains the first M components, and xb

that contains the remaining D −M components. We also define the corresponding partitions of
the mean µ and the partitions of the covariance matrix Σ. Therefore, we get:

x =

(
xa

xb

)
µ =

(
µa

µb

)
Σ =

(
Σaa Σab

Σba Σbb

)

The symmetry of the covariance matrix ΣT = Σ implies that both Σaa and Σbb are symmetric
and Σba = ΣT

ab.
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Marginal distribution The marginal distributions,

p(xa) =

∫

xb

p(xa,xb|µ,Σ)dxb

p(xb) =

∫

xa

p(xa,xb|µ,Σ)dxa

(6)

are Gaussian and are defined by the following mean and covariance matrix:

p(xa) = N (xa|µa,Σaa)

p(xb) = N (xb|µb,Σbb)
(7)

Conditional distribution The conditional distribution of xa given xb

p(xa|xb) =
p(xa,xb|µ,Σ)∫

xa
p(xa,xb|µ,Σ)dxa

=
p(xa,xb|µ,Σ)

p(xb)
(8)

and the one of xb given xa

p(xb|xa) =
p(xa,xb|µ,Σ)∫

xb
p(xa,xb|µ,Σ)dxb

=
p(xa,xb|µ,Σ)

p(xa)
(9)

are also Gaussian. We can compute the mean and the covariance matrix of resulting distributions
in closed form:

p(xa|xb) = N (x|µa|b,Σa|b)

where

µa|b = µa + ΣabΣ
−1
bb (xb − µb)

Σa|b = Σaa −ΣabΣ
−1
bb Σba

(10)

Respectively, for p(xb|xa) we have:

p(xb|xa) = N (x|µb|a,Σb|a)

where

µb|a = µb + ΣbaΣ
−1
aa (xa − µa)

Σb|a = Σbb −ΣbaΣ
−1
aa Σab

(11)

These relationship are the key points when we will derive the Gaussian Process regression.

A simple example To get some intuition about those equations, we can think about the case
where xa and xb are independent. From independence, it follows that:

Cov(xa,xb) = 0 = Σab

We can use the formula above (Eq. 10 and Eq. 11) to derive the conditional distributions
p(xa|xb) and p(xb|xa). We derive p(xa|xb), but the same procedure can be applied to p(xb|xa).

µa|b = µa + ΣabΣ
−1
bb (xb − µb) = µa + 0Σ−1bb (xb − µb) = µa

Σa|b = Σaa −ΣabΣ
−1
bb Σba = Σaa − 0Σ−1bb 0 = Σaa

Therefore, we just derived the fact that p(xa|xb) = N (µa,Σaa) = p(xa). Which we already
know because the conditional probability of two independent random variables is equal to the
unconditional distribution of the non-conditioned variable.
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Figure 3: The plots represent the 2-dimensional Gaussian distribution p(x1,x2) = N (x1,x2|µ,Σ),
where µ = [0, 0] and Σ = [[1, 0.7], [0.7, 1]]. Left : We used Eqn. (7) to compute the marginal
distribution from the joint distribution p(x1,x2). We show also the position of the mean together
with the 95% confidence interval. Right : We compute the conditional distributions p(x1|x2) and
p(x2|x1) from the joint distribution using Eqn. (10) and Eqn. (11). Also in this case, we report
the mean and the 95% confidence interval and we also sample from the conditional.

3 Gaussian Processes

3.1 A different representation of Multivariate Gaussian samples

“Gaussian Process are tricky and it’s not
the equations that are tricky, but the
concepts are.”

David J.C. MacKay

We are going to introduce a new representation for the samples of a multivariate distribution that
will (hopefully) allow you to get a better understanding of why Gaussian Processes work. We start
considering a bi-variate Gaussian distribution N (x|µ,Σ), where the mean µ is a 2-dimensional
vector and the covariance Σ is a 2 × 2 matrix. When we sample from this distribution we get a
2-dimensional vector x = [x1, x2]. We will represent it plotting the value of x1 and x2 at index 1
and 2, respectively, as shown in Fig. 4.

Using this representation we can observe the effect of the covariance matrix in the samples. It
can be noticed from Fig. 5 that considering highly correlated variables x1 and x2 (correlation of 0.9
in the example), we obtain bars that “wiggle” slightly and we have that the two endpoints tends to
move up and down together. Since these two variables have a positive correlation, it means that x2
increases as x1 gets larger and vice-versa. In case of almost independent variables (0.1 correlation),
it can happen that the end points move to different direction, because the correlation between them
is only weakly informative. As we are going to see in the Gaussian Process section, we are going to
prefer correlated variables due to the Smoothness Assumption, which is a general way of expressing
that if a certain point x produce an output y, a close point x′ should produce an output y′ close
to y. Therefore, in the next experiments that we are going to present to understand intuitively
the Gaussian Processes, we are going to use a covariance matrix that reflects the smoothness
assumption. We use the indices to order the variables of the multivariate Gaussian and we make
each variable more correlated with closer variables, i.e. their indices are close, and less correlated
with variables that are further.

Suppose we get more information about the value of x1. We can use the new representation to
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Figure 4: The figures show the usual representation of a sample from a 2-dimensional multivariate
Gaussian and a representation based on the new representation introduced by MacKay. We sample
from N (x1,x2|µ,Σ), where µ = [0, 0] and Σ = [[1, 0.9], [0.9, 1]]. In the 2-dimensional case, we take
the sample and plot the value of x1 and x2 at index 1 and 2 connected by a straight line.
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Figure 5: The plots represent various samples from a 2-dimensional normal distribution using the
MacKay’s bar plot representation with two difference covariance matrices. When x1 and x2 are
almost independent (Left), i.e. the covariance between them is close to 0, the endpoints of the bar
plots wiggle more than the case in which the variables are correlated (Right).
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see what possible values x2 can get. We can use Eqn. (11) to compute the conditional distribution
p(x2|x1) and then sample from it. Since we are assuming smoothness and highly correlated vari-
ables, the difference between the value of x1 and the possible values of x2 is small (See Fig. 6 for
an example).
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Figure 6: Samples from the conditional distribution in case of almost independent (Left) and highly
correlated (Right) variables.

This simple representation allows us to represent high-dimensional Gaussian samples in a 2D plot.
This is the key point to see the connection between multivariate Gaussian and the Gaussian Process
regression that we are going to introduce in Section 3. Consider a 20-dimensional Gaussian with a
covariance matrix that reflects the smoothness assumption, we can sample x = [x1, x2, . . . , x20] and
plot the value of the variables at indices [1, 2, . . . , 20]. The result is presented in Fig. 7. In addition
to that, we can look at what happens to these samples when we condition them on other variables,
such as x1 and x2, or x1 and x11 for example. Also in this case it is pretty simple and straight-
forward. We just use the Eqn. (11) to obtain the conditional distribution p(x3, x4, . . . , x20|x1, x2)
and p(x2, x4, . . . , x20|x1, x11). In Fig. 8 (Right) here we notice that the results look like a lot of
solutions of some non-linear regression problem where in our training set we have two points x1
and x2. Viewing this from the regression problem perspective, in Fig. 8, we have only two points,
defined by the tuples {(1, x1), (2, x2)}, where the first element of the tuple is the indices of the
Gaussian variable, that in this case becomes our x, and the value of the variable itself, denoted by
xi but that in these perspective is our y of the regression problem. Therefore, we are interested in
predicting the values for the points [3, . . . , 20], which can be considered our test set.

Be careful! In the way we are creating a connection between multivariate Gaussian and Gaussian
Process, the notation that can be misleading. Usually in regression we have a dataset of points x
with their respective targets y. In this case we have that the x points are given by the indices of
the Gaussian variables and the targets by the values of the variables, so in this case x1, . . . , x20.

In the proposed setting, we can sample a lot of possible different “functions”, therefore we can plot
the mean and the standard deviation for each prediction for the unknown variables [x3, . . . , x20].
The results can be observed in Fig. 8 (Left). It can be seen, that the standard deviation is lower
when we are close to the training observations, whereas it gets higher far from them.

What does this representation suggest? Suppose that we are interested in getting the predictions
for 10 different x-values without having training points. We can use what we have just learnt above.
We can take these x-values and construct a 10×10 covariance matrix that describe a 10-dimensional
multivariate Gaussian. If we sample from this distribution we get a 10-dimensional vector, where
each entry is a possible prediction for that specific x point. In case we have some training set, we
can still create the covariance matrix and then compute the conditional distribution and sample
from that. There are at least still two open questions. First, we do not know how to construct
a covariance matrix from the x-axis points to get prediction for the possible y’s. Second, the
way we try to visualize a Gaussian process using an alternative representation of a multivariate
Gaussian seems to suggest that the x-axis would have to be all integers because these are the
indices of the variables of the multivariate Gaussian. However, in a regression setting we want to
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Figure 7: Random samples from a 20-dimensional multivariate Gaussian represented using the
MacKay representation. (Left) Image representation of the covariance matrix. Notice that the
covariance matrix is structured: closer points have higher correlation. The covariance is computed
using the indices 1, 2, . . . , 20 in a way that closer points are higher correlated. (Right) Random
samples from the multivariate Gaussian with mean 0 and covariance matrix defined in the left
plot.
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Figure 8: (Upper plots) Random samples from the conditional probability p(x3, , x20|x1, x2). (Upper
Left) The random samples are non-linear function that goes through the conditioned points. (Upper
Right) Since we can get a lot of samples from the conditional distribution, we get 50 samples and
compute the mean and the standard deviation for each variable x3, , x20. We can notice that the
points closer to the observations x1, x2 has low standard deviation and non-zero mean. Point
that are further instead gets higher uncertainty and mean close to zero.(Bottom plots) Random
samples from the conditional probability p(x2, , x20|x1, x11). Also in this case we can notice that
the standard deviation is lower when it is close to the points we have conditioned on.
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model observations with real values, not integers. This is related to the first point, that is, how
we compute the covariance matrix. As we are going to see in Section 3.4, in Gaussian Processes
we generate the covariance matrix by evaluating a kernel function, also often called covariance
function, pairwise on all the points.

3.2 A more analytical introduction to Gaussian Processes

We can introduce Gaussian Processes in a more analytical way compared to the approach used
before, where we use a different representation to create a link between the multivariate Gaussian
distribution and regression. In Section 1.2 Eq. (1) we presented the regression problem as:

y = f(x,w) + ε (12)

y = wTx + ε (Linear regression) (13)

where ε is the residual error between our prediction and the true observation. We often assume ε to
be normal distributed, ε ∼ N (0, σ2). Therefore, we have that y ∼ N (wTx, σ2) is also Gaussian, i.e.
p(y|x,w) = N (wTx, σ2), which means that the targets y are distributed according to a Gaussian
distribution.

Suppose we have a dataset D = {(x1, y1), . . . , (xn, yn)} of n observations. We have three
different methods to learn the parameters w:

• Maximum Likelihood Estimation (MLE), where we try to maximize the likelihood of our data
given the weights:

p(D|w) =

n∏

i=1

p(yi|xi,w) (14)

• Maximum a Posteriori (MAP), where instead we try to maximize the posterior probability
of the weights w given the dataset:

p(w|D) =
p(D|w)p(w)

p(D)

∝ p(D|w)p(w)

(15)

where p(D|w) is the likelihood, which is what we are maximizing in MLE, and p(D) is the
prior.

• Fully Bayesian approach, where instead of computing a single point estimate for w, as the two
previous methods do, which results in a single function, we can fully compute the posterior
distribution p(w|D). As we are going to see next, in Gaussian Process we are going to use a
Bayesian approach, but we will be interested in the distribution over function and not over
weights.

We have seen that p(y|x,w) = N (wTx, σ2), therefore we have that p(D|w) =
∏n

i=1 p(yi|xi,w),
which is a product of Gaussian distributions, that is still a Gaussian distribution. Both of the
aforementioned methods can be used to learn the parameters of the model. At the end of the day,
however, the aim of learning the parameters of a model is for making predictions for future data,
i.e. the test set. In addition to that, the predictions we obtain from the learned model depends
on a particular set of parameters w, i.e. the one that maximizes the objective. Therefore, instead
of trying to learn the parameters w, we can try to model the targets of our test set y∗ directly.
Suppose we have only one test point x∗, we are interesting in modeling the distribution p(y∗|D,x∗),
where D is the training set as before. We can notice that in this case we are not committing to
a specific model, indeed there is no weights parameters in the distribution that we want to model
and there is only one assumption that we are going to make.
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We can try to derive an expression for p(y∗|D,x∗), marginalizing out the models given by the
various w:

p(y∗|D,x∗) =

∫

w

p(y∗,w|x∗, D)dw

=

∫

w

p(y∗|x∗, D,w)p(w|D)dw

Since knowing w makes it independent from D, we can write:

=

∫

w

p(y∗|x∗,w)p(w|D)dw

(16)

Unfortunately, this integral is in general intractable in closed form. However, if we assume that
both the likelihood p(D|w) and the prior p(w) are Gaussian, we can use the Gaussian properties
to immediately infer that p(w|D) is Gaussian (using Bayes’ rule). Regarding p(y∗|x∗, D,w), as
soon we get w, we have that the y∗ does not depend on D anymore, so we have p(y∗|x∗,w) and,
in the regression setting we have seen that it is Gaussian. Therefore, we have that the distribution
we are trying to model, p(y∗|D,x∗), is Gaussian.

The above equation shows that we can predict y∗ for any x∗ without committing to a specific
model, but instead we can average the prediction over all the possible models. Since what we
obtain is still a Gaussian distribution, we can get also the uncertainty (or posterior interval) on the
prediction. The fact that we know that the result is a Gaussian allow us to skip all the integrals,
because we already know how a Gaussian looks like. We know that we have to fit two parameters:
a mean and a covariance matrix. Indeed, we know that

p(y∗|D,x∗) = p(y∗|y,X,X∗) = N (µy∗|y,Σy∗|y)

where µy∗|y and Σy∗|y would have a form similar to Eq. 10.
This is what happens in Gaussian Process regression. Instead of committing to a specific model,

which means learning some parameters w, it starts with the assumption that the distribution of
the target values p(y,y∗) is Gaussian. Making this assumption upfront, allows us to say that
p(y∗ | y) is Gaussian, without going through all the steps we did before. But what does it imply
that our targets are drawn from a Gaussian distribution? Suppose we have one training observation
(x1, y1) and a test observation (x∗, y∗). If the data is Gaussian distributed it means that there is
a Gaussian distribution that tells me that if y1 and y∗ are highly correlated, knowing the value of
y1 would inform about the value of the test target y∗, otherwise, if they are not correlated, we do
not gain information. If we know the value of y, then we can get the distribution of y∗ computing
the conditional Gaussian distribution.

3.3 Putting the pieces together...

We presented two different ways of introducing Gaussian Process regression to achieve some math-
ematical intuition. The first approach was based on visualization. We introduced a new way to
represent samples from a multivariate Gaussian distribution. We saw that we can treat the value of
each random variable as the target y of a specific x, in that case given by the index of the variable.
If we look at this from the opposite point of view, we can assume that, given some x-values, we
can sample their target y from a multivariate distribution. In other words, we can assume that,
before observing the training targets, all the targets y are drawn from a Gaussian distribution.

The second approach, instead, was more analytical. Starting from the assumption that the goal
of a machine learning model is to get predictions for future data, we decided to model directly the
distribution of the targets of the test set. We argued that considering a Gaussian likelihood and
a Gaussian prior, we have that the distribution is Gaussian. Assuming directly at the beginning
that our targets are Gaussian distributed, as we are going to do in Gaussian Process regression,
allows us to reach the same point without having to commit to a specific model.

3.4 Gaussian Process Regression

Let’s assume that for now we have noise-free observation, i.e. y = f(x). We have seen that it is
reasonable for at least two reasons to assume that, before we observe the training targets, those
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are drawn from a Gaussian distribution:


y1
...
yn


 ∼ N (µ,Σ) (17)

If we center the data, i.e. we subtract the sample mean, we then consider a zero-mean Gaussian
distribution, i.e. N (0,Σ). The open question is then how we compute the covariance matrix
Σ. Here we can again apply one of the tricks of Gaussian Process. The covariance matrix will
not only describe the shape of the distribution, but it is going to determine the characteristics
of the function we want to predict. We generate the covariance evaluating a kernel function. A
kernel, which is also called covariance function in the literature, is a positive-definite function of
two inputs x, x′. In the Gaussian process context x and x′ are usually the input observations,
therefore they are usually vectors in a Euclidean space. The output of a kernel is a measure of
the similarity between two objects. In Gaussian processes, we will use this measure to specify the
similarity between the y’s, and to compute it we use their respective x. Indeed, for the smoothness
assumption, we have that xi ≈ xj =⇒ yi ≈ yj . Therefore, you have to remember that we are
constructing the covariance matrix of the Gaussian distribution of the y’s and to do so, we use
their respective x. So formally, we have:

Σij = Cov(yi, yj) = Cov(f(xi), f(xj)) = k(xi, xj) (18)

There are a lot of possible kernels that can be used in Gaussian Process. Each kernel corresponds
to a different set of assumptions that reflects the structure of the function that we wish to model.
In these notes we will focus only on a kernel that is considered as the de-facto default kernel, the
Squared-Exponential (SE) kernel, which is defined by:

kSE(xi, xj) = σ2 exp

(
−‖xi − xj‖

2

2l2

)
(19)

and has the following two parameters:

• The lengthscale l > 0 determines the length of the wiggles in your function. In general, you
can extrapolate only up to a lengthscale away from your training data. That is because if
there is not data, we will get the chosen prior.

• The output variance σ2 < 0, also sometimes called magnitude, determines the average dis-
tance of the function that we are trying to model from its mean. This can be seen as a scaling
factor.

If you have a closer look at this kernel, we can see that its behaviour is dominated by the exponential
function. We can see that the both ‖xi − xj‖2 and the parameter l are always positive, so the

function exp
(
−‖xi−xj‖2

2l2

)
takes the value from 1, when ‖xi − xj‖2 is close to 0, and tends towards

0 when ‖xi − xj‖2 approaches +∞. Therefore, we are enforcing that yi = f(xi) and yj = f(xj)
are highly correlated if the xi and xj are close to each other. The closer the x’s the higher is the
correlation between the y and vice-versa. This perfectly describes the smoothness assumption we
mentioned above. Indeed, all samples are continuous and infinitely differentiable (has derivatives
of any order).

3.4.1 Prior distribution

At this point we answered all remaining open questions. We have just learnt how to construct
the covariance matrix and before we have seen the connection between multivariate Gaussians
and regression, and also the connection between multivariate Gaussians and Gaussian process
regression. Therefore, we can apply all the tricks introduced in Section 3.1, like sampling some
functions from the prior or predicting the value of test points given some training observation.
Here we will focus on sampling from the prior, and see how the parameters of the kernel influences
the function shapes.

12



If you think of Figure 7, what we are doing now, is exactly the same. At that point we
only justified the use of a structured covariance by the smoothness assumption, but we had no
recipe on how to construct it. Now, hopefully, it is more clear what we are doing. If we have no
training examples, the dimension of the prior distribution depends on the number of test points3,
for example N∗ = |X∗|, where the operator |X| indicates the cardinality of the set X. We build
the covariance matrix using the points xi ∈ X∗ and the squared-exponential kernel and we usually
assume mean vector µ = 0. Therefore, if we sample from this distribution, we get a random vector
y∗:

y∗ ∼ N (0,K(X∗,X∗)) (20)

where K(X∗,X∗) denotes the N∗ ×N∗ matrix of the kernel function evaluated at all pairs of test
points. The random vector y∗ will contain possible values for each x∗ ∈ X∗. In Fig. 9 and Fig. 10,
we show different samples using different parameters for the lengthscale and kernel variance. It can
be noticed that, if we use smaller lengthscale we get more wiggling functions, whereas increasing
the kernel variance we get a prior with a larger 95% confidence interval. Notice that in the examples
the test points are equidistant, but this need not be the case.
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Figure 9: We represent the different steps to take to sample from the prior of a Gaussian pro-
cess. We use the following parameters fro the square-exponential kernel: lengthscale = 1,
kernel variance = 1. First, we created the covariance matrix using N = |Xtest| = 50 test
points (Left). The we plot the mean function and the 95% confidence interval (Center). Then,
form this 50-dimension multivariate Gaussian we sample 15 function, i.e. 15 different values for
our test points and plot it (Right).
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Figure 10: We represent the different steps to take to sample from the prior of a Gaussian pro-
cess. We use the following parameters fro the square-exponential kernel: lengthscale = 0.5,
kernel variance = 1.5. First, we created the covariance matrix using N = |Xtest| = 50 test
points (Left). The we plot the mean function and the 95% confidence interval (Center). Then,
form this 50-dimension multivariate Gaussian we sample 15 function, i.e. 15 different values for
our test points and plot it (Right).

3Note that in this case we are using the typical notation used in Gaussian Process, X∗, to indicate the test set
Xtest. In the same way, we are using x∗ and y∗ to denote the test points and respective predictions.
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3.4.2 Prediction with noise-free observation

We are not usually interested in sampling random functions from the prior, but instead we want
to use the information that training observations give us about the function to be able to predict
values for future test points. As a starting point we consider the case in which the training
observation are noise free, which is likely an unrealistic assumption in most real-world scenarios.
In the non-linear regression setting we present at the beginning of these lecture notes, it means
that yi = f(xi, w), where the error ε does not appear. Before starting doing Gaussian Process
regression, it is common practice to standardize the data. This way, each data feature and target
will have mean 0 and standard deviation 1. After the standardization, the first step is to define
the joint distribution of the training observations y and the test outputs y∗ according to the prior:

[
y
y∗

]
∼
(

0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(21)

where X is the matrix containing the training points xi and X∗ is the test set. If there are N
training points and N∗ test points then K(X,X) is the N × N matrix of the kernel evaluated
at all training points pairs, K(X,X∗) is the N × N∗ matrix with the kernels evaluated for all
pairs created by combining the training points and test points. As before K(X∗, X∗) contains
the N∗ ×N∗ elements obtained by computing the covariance for all pairs of test points (using the
covariance function).

In case we do not standardize the data, the mean vector should also be taken into account. In
this case the distribution above becomes:

[
y
y∗

]
∼
([

µ(X)
µ(X∗)

]
,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(22)

To get the posterior, we are interested in the conditional probability of y∗|y, in this case given
by p(y∗|y,X,X∗), which corresponds to conditioning the joint Gaussian prior distribution on the
observations. From Section 2.1 we learned that the resulting distribution is Gaussian and we are
also able to compute its conditional mean and conditional covariance. In case of standardized data,
we have:

p(y∗|y,X,X∗) = N (µy∗|y,Σy∗|y)

µy∗|y = K(X∗,X)K(X,X)−1y

Σy∗|y = K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)

(23)

Otherwise, the mean should be taken into account:

p(y∗|y,X,X∗) = N (µy∗|y,Σy∗|y)

µy∗|y = µ(X∗) +K(X∗,X)K(X,X)−1(y − µ(X))

Σy∗|y = K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)

(24)

As it can be seen in Fig. 11, all different samples go through the training points. If we look at the
posterior distribution, we can notice that the uncertainty is really low close to the observation.

3.4.3 Prediction using noisy observation

As previously stated, in real-world applications it is more realistic to not have access to noiseless
observations, but rather a noisy version of them. In the regression case, as in Section 1.2, we have
yi = f(xi,w) + ε, where we also assume that ε is additive and independent normal distributed
noise, with mean 0 and variance σ2

n. Taking this into account, the prior of the noisy observation
becomes:

Σij = Cov(yi, yj) = k(xi,xj) + σ2
nδij (25)

where δij is a Kronecker delta which is equal to 1 if and only if i = j, and zero otherwise. We can
re-write this in matrix notation:

Cov(y) = K(X,X) + σ2
nI (26)
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The joint distribution of the observed target values y and the values y∗ at the test points x∗
becomes

[
y
y∗

]
∼
(

0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(27)

and if we do not standardize your data:

[
y
y∗

]
∼
([

µ(X)
µ(X∗)

]
,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(28)

We can derive the conditional distribution as we did before, and we obtain:

p(y∗|y,X,X∗) = N (µy∗|y,Σy∗|y)

µy∗|y = K(X∗,X)[K(X,X) + σ2
nI]−1y

Σy∗|y = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2
nI]−1K(X,X∗)

(29)

These are the key predictive equations for Gaussian Process regression. Since it can look a bit
confusing, we can re-write it in a more compact notation. If we define K = K(X,X), K∗ =
K(X,X∗) and K∗∗ = K(X∗,X∗), we get:

p(y∗|y,X,X∗) = N (µy∗|y,Σy∗|y)

µy∗|y = K∗
T [K + σ2

nI]−1y

Σy∗|y = K∗∗ −K∗
T [K + σ2

nI]−1K∗

(30)

In case data is not standardized we have to let the target have a non-zero mean, we should be
taken into account:

p(y∗|y,X,X∗) = N (µy∗|y,Σy∗|y)

µy∗|y = µ(X∗) + K∗
T [K + σ2

nI]−1(y − µ(X))

Σy∗|y = K∗∗ −K∗
T [K + σ2

nI]−1K∗

(31)

3.4.4 Step-by-step implementation of the Gaussian Process regression algorithm

Here, we present a practical implementation of the Gaussian Process regression algorithm (see
Algorithm 1). We are going to use the Cholesky decomposition, instead of inverting directly the
matrices4 because it is faster and numerically more stable to compute the inverse of a lower trian-
gular matrix than a normal one. The Cholesky decomposition is used to decompose a symmetric,
positive definite matrix A into a product of a lower triangular matrix L and its transpose:

LLT = A (32)

where L is called the Cholesky factor. This decomposition is useful when we want to solve linear
systems that involve symmetric, positive definite matrices, such as solving Ax = b for x. In our
settings, if we consider the mean that we want to compute

µy∗|y = K∗
T [K + σ2

nI]−1y

we can notice that we can write the term

[K + σ2
nI]−1y

4In case you want to implement the algorithm using the direct inversion, we suggest you to use the
numpy.linalg.pinv function from the NumPy library.
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Figure 11: (Upper plots) Gaussian Process regression posterior with noise-free observations. We
can see that the uncertainty is zero where we have observation and, at the same time, every
sample goes exactly through the training points. (Bottom plots) Posterior distribution with noisy
observations. In this case, we have that we have uncertainty also around the observation, and we
have that some sample does not go through the training points.

as the result of the following linear system

[K + σ2
nI]α = y

=⇒ α = [K + σ2
nI]−1y

Therefore, to solve it in a more stable way, we can compute the Cholesky decomposition of K+σ2
nI,

so we have:
K + σ2

nI = LLT

If we rewrite
µy∗|y = K∗

T [K + σ2
nI]−1y = K∗

Tα

we have that
α = [K + σ2

nI]−1y = L−TL−1y

because we have that [K + σ2
nI]−1 = (LLT )−1 = L−TL−1 due to the properties that (AB)−1 =

B−1A−1. Here we can see that L−1y = m is a linear system and also L−Tm = α is another linear
system. Here we use the backslash operator \ to indicate the solution of linear system5. If we use
it, we can write:

α = LT \(L\y)

We can also go through the computation needed to compute the covariance of the posterior
distribution:

Σy∗|y = K∗∗ −K∗
T [K + σ2

nI]−1K∗

5In Python, this can be easily done with the function numpy.linalg.solve.
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and if we focus on the right term of the subtraction. We can substitute K + σ2
nI = LLT in the

right term:
K∗

T [K + σ2
nI]−1K∗ = K∗

T (LLT )−1K∗

and using the same properties of the inverse matrices we get

K∗
T (LLT )−1K∗ = K∗

TL−TL−1K∗

If we use the property of the transpose of the product of two matrices (AB)T = BTAT we can
write

K∗
TL−TL−1K∗ = (L−1K∗)

TL−1K∗

where we notice that we can compute the same quantities once. As we have seen above, L−1K∗ is
the solution, v, to the following linear system:

Lv = K∗

=⇒ v = L−1K∗

and using the backslash operator we have

v = L\K∗

With this result in mind, we can compute the covariance of the posterior in the following way:

Σy∗|y = K∗∗ − vTv

The algorithm is represented in a more compact and readable way below.

Algorithm 1: Gaussian Process regression

Start computing K = K(X,X), K∗ = K(X,X∗) and K∗∗ = K(X∗,X∗);
L = Cholesky(K + σ2

nI);

α = LT \(L\y);

µy∗|y = K∗
Tα;

v = L\K∗;
Σy∗|y = K∗∗ − vTv

Why should we standardize our data? There are a number of reasons why we should stan-
dardize the data. The first reason is to match the prior assumption of the targets having mean
0. In addition to that, we have seen that the kernel function has a scale parameter, the kernel
variance, therefore having standardize inputs we should get a better estimation of it when we are
going to optimize the parameters. The most important reason, however, is that to compute the
conditional distribution, we are computing the inverse of matrices and this can create numerical
problems for ill-conditioned matrices.

3.4.5 Parameters optimization

There is still one key issue open. We have three hyperparameters to tune in the Gaussian Process
regression: the lengthscale l, the kernel variance σ2 and the noise variance σ2

n of the observations.
One way to choose the right values for these hyperparameters is to choose the ones that maximize
the log-likelihood of the training data.

log p(y|X) = logN (y|0,K + σ2
nI) = −1

2
yT [K + σ2

nI]−1y − 1

2
log |K + σ2

nI| − N

2
log(2π) (33)

where K = K(X,X) as before, and |K + σ2
nI| is the determinant6 of the matrix K + σ2

nI.

6In Python you can compute the determinant using the function numpy.linalg.slogdet.
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If we use Algorithm 1, we can use the properties that the determinant of a positive definite
symmetric matrix can be calculated efficiently by using its Cholesky factor L. Indeed, we have:

|K + σ2
nI| = |LLT | = |L||LT | = |L|2 =

n∏

i=1

L2
ii (34)

because L is lower triangular, and in case of the log-determinant, this becomes

log |K + σ2
nI| = 2

n∑

i=1

logLii (35)

Therefore, we can compute the log-likelihood in the following way:

log p(y|X) = logN (y|0,K + σ2
nI) = −1

2
yTα−

∑

i

logLii −
N

2
log(2π) (36)

where we are summing up the logarithms of the elements of the diagonal of the matrix L.

Tricks to optimize the parameters using Gradient Descent While most libraries use
Quasi-Newton methods, like the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, for sim-
plicity we will here rely on gradient descent for optimization of the hyperparameters of the Guassian
Process. Remember that we want to optimize the lengthscale, the output variance and the noise
variance. When we have only a few points it might happen that the optimization process tries to
explain the points using the noise variance. Therefore, the mean function of the Gaussian process
will result in a straight (with some slope) line, because we get an high value for the lengthscale,
and not a function that goes close to the points we have, which is what we would like to get,
especially if we apply GPs to Bayesian Optimization. There are two possible solution to avoid this
to happen.

One possible way to avoid this to happen, is pretty simple. We can optimize only the lengthscale
and the output variance, while we keep the noise variance fixed to a really small value. The second
possibility, instead, is to put a prior on the value of the lengtscale, that is l ∼ p(l). Therefore, our
optimization problem becomes:

{l, o, n} ∈ arg max
l,o,n
{p(l, o, n | D} = arg max

l,o,n

{
n∏

i=1

[
p(Di | l, o, n)

]
p(l)

}

where l is the lengthscale, o is the output variance and n the noise variance. Taking the logarithm
we get:

{l, o, n} ∈ arg max
l,o,n

{
n∑

i=1

[
log p(Di | l, o, n)

]
+ log p(l)

}

This is the new function we should maximize (or minimize the negated function) in the optimization
process.

As an example, we will here present how to compute the logarithm of the prior, when we use
a Log-normal prior for the lengthscale. The Log-Normal distribution is a continuous distribution
of a random variable whose logarithm is normally distributed. The probability density function is
given by:

p(l) =
1

l

1

σ
√

2π
exp

(
− (ln l − µ)2

2σ2

)

We can derive the logarithm of the density function, log p(l):
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p(l) = log

(
1

l

1

σ
√

2π
exp

(
− (ln l − µ)2

2σ2

))

= log
1

l
+ log

(
1

σ
√

2π
exp

(
− ln l − µ)2

2σ2

))

= − log(l) + logN (ln l | µ, σ2)
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References and useful links

The following references were used to write the following notes. These references are also meant
to be used to get a different introduction to the topic of Gaussian Process regression and/or
uncertainty in machine learning.

• “Gaussian Processes for Machine Learning”, Carl Edward Rasmussen and Chris Williams,
the MIT Press, 2006. You can get the online version for free.

• “Uncertainty in deep learning”, Yarin Gal, Diss. PhD thesis, University of Cambridge, 2016.
You can access it here

• “A Visual Exploration of Gaussian Processes”, by Görtler et al. Distill, 2019. Interactive
publication of Gaussian Processes.

• The following YouTube video lectures:

– “Machine learning - Introduction to Gaussian processes”, lecture by Nando De Freitas
at University of British Columbia. Link

– “ML Tutorial: Gaussian Processes”, lecture by Richard Turner at Imperial College
London. Link

– “Gaussian Process Basics”, lecture by David Mackay. Link

– “Machine Learning Lecture 26 ”Gaussian Processes”, lecture by Kilian Weinberger at
Cornell University. Link
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http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
https://www.youtube.com/watch?v=4vGiHC35j9s&t=3394s
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https://www.youtube.com/watch?v=NegVuuHwa8Q&t=253s
https://www.youtube.com/watch?v=R-NUdqxKjos
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