Model-agnostic out-of-distribution detection using combined statistical tests

Out-of-distribution detection

Consider a curated dataset x_1, \ldots, x_m that lives in a space \mathcal{X} . Assume we get some new data $\tilde{x}_1, \ldots, \tilde{x}_n$. We are interesting in finding if data $\tilde{x}_1, \ldots, \tilde{x}_n$ come from:

- the same distribution as x_1, \ldots, x_m
- a different distribution than x_1, \ldots, x_m

(IN-DISTRIBUTION) (OUT-OF-DISTRIBUTION)

Using a one-sided threshold on the log-likelihood of a generative models, as proposed by Bishop (1994), does not work for state-of-the-art deep generative models, as shown by Nalisnick (2018).

We propose a method to **combine** different one-sided test statistics using p-values, which is hyperparameter-free and works for any differentiable generative **model** without relying on model-specific statistics.

Parametric test for OOD detection

Consider a parametric family $(p_{\theta})_{\theta \in \Theta}$ of probability densities over \mathcal{X} and learn a suitable $\theta_0 \in \Theta$, for example by fitting a generative model p_{θ_0} on x_1, \ldots, x_m .

If we assume that $\tilde{x}_1, \ldots, \tilde{x}_n \sim_{\text{i.i.d.}} p_{\tilde{\theta}}$ for some unknown $\theta \in \Theta$, we wish to test:

$$\mathcal{H}_0: \widetilde{ heta} = heta_0, \ \mathcal{H}: \widetilde{ heta}
eq heta_0.$$

The classic four tests are:

- likelihood ratio statistic is $S_{LR} = 2(\ell(\hat{\theta}) \ell(\theta_0)),$
- Wald statistic is $S_W = (\hat{\theta} \theta_0)^T I(\hat{\theta})(\hat{\theta} \theta_0),$
- score statistic is $S_S = \nabla \ell(\theta_0)^T I(\theta_0)^{-1} \nabla \ell(\theta_0),$
- gradient statistic is $S_G = \nabla \ell(\theta_0)^T (\hat{\theta} \theta_0),$

We focus on the **score statistic** for OOD since it is easy to compute, and it does not require fitting an additional model $\hat{\theta}$ on the test points $\tilde{x}_1, \ldots, \tilde{x}_n$.

Maximum-mean-discrepancy for OOD detection

Denoting p_{data} the true training data distribution, we can use a *two-sample test*:

$$\mathcal{H}_0: ilde{x}_1, \dots, ilde{x}_n \thicksim p_{ ext{data}}, \ \mathcal{H}: ilde{x}_1, \dots, ilde{x}_n
ot \sim p_{ ext{data}}.$$

To measure the distance between p_{data} and $\tilde{x}_1, \ldots, \tilde{x}_n$ we need:

- A generative model p_{θ} to approximate p_{data} ;
- A measure of distance, we choose **maximum mean discrepancy (MMD)**.

Given a kernel whose feature map is $\Phi: \mathcal{X} \to \mathcal{H}$, the MMD between two distributions P and Q over \mathcal{X} is defined as

$$\mathrm{MMD}_{\Phi}(P,Q) = \|E_{X\sim P}[\Phi(X)] - E_{Y\sim Q}[\Phi(Y)]\|_{\mathcal{H}}.$$

In our the test statistics will be of the form

$$MMD_{\Phi}\left(\frac{1}{m}\sum_{i=1}^{m}x_{i}, \frac{1}{n}\sum_{i=1}^{n}\tilde{x}_{i}\right) = \left\|\frac{1}{m}\sum_{i=1}^{m}\Phi(x_{i}) - \frac{1}{n}\sum_{i=1}^{n}\Phi(x_{i})\right\| = \frac{1}{m}\sum_{i=1}^{m}\Phi(x_{i}) - \frac{1}{n}\sum_{i=1}^{n}\Phi(x_{i}) - \frac{1$$

Federico Bergamin^{*,1}, Pierre-Alexandre Mattei^{*,2}, Jakob D. Havtorn^{1,3}, Hugo Senetaire¹, Hugo Schmutz^{2,4}, Lars Maaløe^{1,3}, Søren Hauberg¹, Jes Frellsen¹

Which statistics we should use?

$$\tilde{v}_i) \bigg\|_{\mathcal{H}}, \qquad (2)$$

Fisher kernel

 $\Phi_{\text{Fisher}}(x) = I(\theta)^{-\frac{1}{2}} \nabla \log p_{\theta}(x).$

$$\operatorname{IMD}_{\Phi_{\operatorname{Fisher}}}\left(\frac{1}{m}\sum_{i=1}^{m}x_{i}, \frac{1}{n}\sum_{i=1}^{n}\tilde{x}_{i}\right) = \left\|\frac{I(\theta)^{-\frac{1}{2}}}{m}\sum_{i=1}^{m}\nabla\log p_{\theta}(x_{i}) - \frac{I(\theta)^{-\frac{1}{2}}}{n}\sum_{i=1}^{n}\nabla\log p_{\theta}(\tilde{x}_{i})\right\|_{2}.$$
 (4)

- At maximum-likelihood estimate and with no model misspecification: $\mathbb{E}[\nabla \log p_{\theta}(x)] = 0.$
- The norm of the second term alone then it is equivalent to the square root of the **score statistic**. Due to Occam's Razor, we decide to use the **score statistic** directly.

Typicality kernel

 $\Phi_{\text{Typicality}}(x) = \log p_{\theta}$

$$\operatorname{MD}_{\Phi_{\text{Typicality}}}\left(\frac{1}{m}\sum_{i=1}^{m}x_{i}, \frac{1}{n}\sum_{i=1}^{n}\tilde{x}_{i}\right) = \left\|\frac{1}{m}\sum_{i=1}^{m}\log p_{\theta}(x_{i}) - \frac{1}{n}\sum_{i=1}^{n}\log p_{\theta}(\tilde{x}_{i})\right\|_{2}.$$
 (6)

• This is equivalent to the **typicality test** proposed by Nalisnick et al, (2019).

Both statistics are **one-sided** and **can be computed for any differentiable genera**tive model. We show empirically that these are also independent.

Why combining statistics?

Zhang et al. (2021) proved that in case of single-sample OOD detection there is **no test** statistic that is constantly better than all the possible alternatives. We hypothesise that a combination of multiple statistics should perform better, especially in situations where one of the statistics fails.

Proposed method

Our method relies on the computation of the p-values for the statistics computed on $\tilde{x}_1, \ldots, \tilde{x}_n$. We relied on a validation set and standard bootstrap resampling procedure to estimate the distribution of the two statistics under \mathcal{H}_0 .

An optimal way to combine *p*-values of one-sided independent statistics is the **Fisher's** method:

$$\mathbf{X^2} \sim -2\sum_{j=1}^k \ln(\mathbf{p}_j).$$

Technical challenges:

- We use a diagonal approximation for the Fisher Information Matrix $I(\theta)$ using the training set;
- We need to compute per-sample gradients.

References

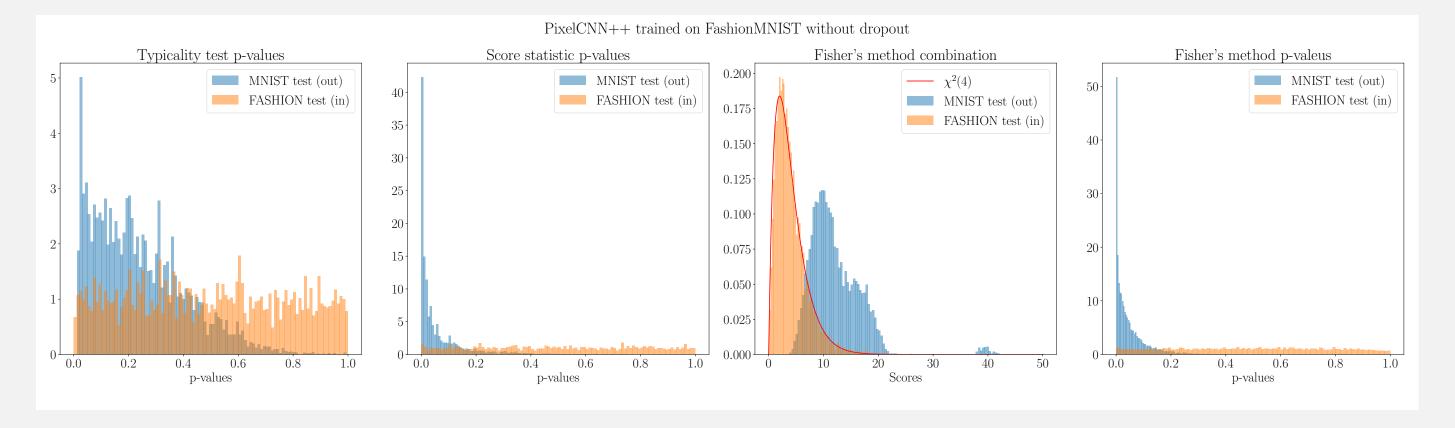
C. M. Bishop. Novelty detection and neural network validation IEE Proceedings-Vision, Image and Signal processing, 1994. E. Nalisnick et al. Do deep generative models know what they don't know?, ICLR, 2018. E. Nalisnick et al. Detecting out-of-distribution inputs to deep generative models using a test for typicality, 2019 L. Zhang et al. Understanding failures in out-of-distribution detection with deep generative models. ICML, 2021 W. Morningstar et al. Density of states estimation for out of distribution detection. AISTATS. 2021

(3)

$$_{\theta}(x),$$
 (5)

Are the two statistics really independent?

If the statistics are independent and the null hypotheses are accepted, then the Fisher combination test statistic χ^2 follows a **chi-squared distribution** with 2k degrees of freedom.



Results on single-sample OOD detection

	FashionMNIST (in) / MNIST (out)							
		SINGLE	COMBINATION					
MODELS	$\log p(x)$	$\ \nabla \log p(x)\ _2$	TYPICALITY	SCORE STAT	FISHER'S METHOD	$\mathrm{DoSE}_{\mathrm{KDE}}$		
PIXELCNN++ (dropout)	0.0762	0.8709	0.8314	0.8822	0.9369	0.8822		
PIXELCNN++ (no dropout)	0.1048	0.9532	0.7575	0.9381	0.9536	0.9382		
GLOW (RMSProp)	0.1970	0.8904	0.4807	0.9114	0.8598	0.8901		
GLOW (Adam)	0.1223	0.7705	0.6987	0.8745	0.8839	0.8752		
HVAE	0.2620	0.8714	0.4884	0.9578	0.9383	0.9498		
	CIFAR10 (in) / SVHN (out)							
	SINGLE STATISTICS			COMBINATION				
MODELS	$\log p(x)$	$\ \nabla \log p(x)\ _2$	TYPICALITY	SCORE STAT	FISHER'S METHOD	$\mathrm{DoSE}_{\mathrm{KDE}}$		
PIXELCNN++ (model1)	0.1553	0.8006	0.6457	0.6407	0.6826	0.6571		
PIXELCNN++ (model2)	0.1567	0.7923	0.6498	0.7067	0.7300	0.7243		
GLOW (RMSProp)	0.0630	0.8585	0.8651	0.7940	0.8683	0.8510		
GLOW (Adam)	0.0627	0.7844	0.8624	0.7655	0.8613	0.8588		
HVAE	0.0636	0.8067	0.8679	0.7335	0.8603	0.8179		
	CIFAR10 (in) / CIFAR100 (out)							
		SINGLE STATISTICS			COMBINATION			
MODELS	$\log p(x)$	$\ \nabla \log p(x)\ _2$	TYPICALITY	SCORE STAT	FISHER'S METHOD	$\mathrm{DoSE}_{\mathrm{KDE}}$		
PIXELCNN++ (model1)	0.5153	0.5306	0.5458	0.5362	0.5563	0.5477		
PIXELCNN++ (model2)	0.5150	0.5230	0.5455	0.5325	0.5543	0.5453		
GLOW (RMSProp)	0.5206	0.5547	0.5507	0.5801	0.5844	0.5842		
GLOW (Adam)	0.5206	0.5593	0.5508	0.5692	0.5775	0.5767		
HVAE	0.5340	0.5280	0.5493	0.5798	0.5879	0.5941		

	FashionMNIST (in) / MNIST (out)							
		SINGLE	COMBINATION					
MODELS	$\log p(x)$	$\ \nabla \log p(x)\ _2$	TYPICALITY	SCORE STAT	FISHER'S METHOD	DoSE _{KDE}		
PIXELCNN++ (dropout)	0.0762	0.8709	0.8314	0.8822	0.9369	0.8822		
PIXELCNN++ (no dropout)	0.1048	0.9532	0.7575	0.9381	0.9536	0.9382		
GLOW (RMSProp)	0.1970	0.8904	0.4807	0.9114	0.8598	0.8901		
GLOW (Adam)	0.1223	0.7705	0.6987	0.8745	0.8839	0.8752		
HVAE	0.2620	0.8714	0.4884	0.9578	0.9383	0.9498		
	CIFAR10 (in) / SVHN (out)							
		SINGLE STATISTICS			COMBINATION			
MODELS	$\log p(x)$	$\ \nabla \log p(x)\ _2$	TYPICALITY	SCORE STAT	FISHER'S METHOD	$DoSE_{KDE}$		
PIXELCNN++ (model1)	0.1553	0.8006	0.6457	0.6407	0.6826	0.6571		
PIXELCNN++ (model2)	0.1567	0.7923	0.6498	0.7067	0.7300	0.7243		
GLOW (RMSProp)	0.0630	0.8585	0.8651	0.7940	0.8683	0.8510		
GLOW (Adam)	0.0627	0.7844	0.8624	0.7655	0.8613	0.8588		
HVAE	0.0636	0.8067	0.8679	0.7335	0.8603	0.8179		
	CIFAR10 (in) / CIFAR100 (out)							
		SINGLE STATISTICS			COMBINATION			
MODELS	$\log p(x)$	$\ \nabla \log p(x)\ _2$	TYPICALITY	SCORE STAT	FISHER'S METHOD	$\mathrm{DoSE}_{\mathrm{KDE}}$		
PIXELCNN++ (model1)	0.5153	0.5306	0.5458	0.5362	0.5563	0.5477		
PIXELCNN++ (model2)	0.5150	0.5230	0.5455	0.5325	0.5543	0.5453		
GLOW (RMSProp)	0.5206	0.5547	0.5507	0.5801	0.5844	0.5842		
GLOW (Adam)	0.5206	0.5593	0.5508	0.5692	0.5775	0.5767		
HVAE	0.5340	0.5280	0.5493	0.5798	0.5879	0.5941		

Can we avoid discarding too many inliers?

When we perform OOD detection, we want to be sure to not discard too many inliers. Using p-values allows us to use well-studied techniques for **false discovery rate (FDR) control**, i.e. controlling the percentage of in-distribution data classified as outliers. We used **Benjamini-Hochberg correction** which guarantees that, for a given significance level α , the FDR stays below that specific level.

