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Out-of-distribution detection

Consider a curated dataset x1, . . . , xm that lives in a space X . Assume we get some

new data x̃1, . . . , x̃n. We are interesting in finding if data x̃1, . . . , x̃n come from:

• the same distribution as x1, . . . , xm (IN-DISTRIBUTION)

• a di↵erent distribution than x1, . . . , xm (OUT-OF-DISTRIBUTION)

Using a one-sided threshold on the log-likelihood of a generative models, as proposed

by Bishop (1994), does not work for state-of-the-art deep generative models, as shown

by Nalisnick (2018).

We propose a method to combine di↵erent one-sided test statistics using p-values,
which is hyperparameter-free and works for any di↵erentiable generative

model without relying on model-specific statistics.

Parametric test for OOD detection

Consider a parametric family (p✓)✓2⇥ of probability densities over X and learn a

suitable ✓0 2 ⇥, for example by fitting a generative model p✓0 on x1, . . . , xm.

If we assume that x̃1, . . . , x̃n ⇠i.i.d. p✓̃ for some unknown ✓̃ 2 ⇥, we wish to test:

H0 : ✓̃ = ✓0,

H : ✓̃ 6= ✓0.

The classic four tests are:

• likelihood ratio statistic is SLR = 2(`(✓̂) � `(✓0)),

• Wald statistic is SW = (✓̂ � ✓0)
TI(✓̂)(✓̂ � ✓0),

• score statistic is SS = r`(✓0)
TI(✓0)

�1
r`(✓0),

• gradient statistic is SG = r`(✓0)
T
(✓̂ � ✓0),

We focus on the score statistic for OOD since it is easy to compute, and it does not

require fitting an additional model ✓̂ on the test points x̃1, . . . , x̃n.

Maximum-mean-discrepancy for OOD detection

Denoting pdata the true training data distribution, we can use a two-sample test :

H0 : x̃1, . . . , x̃n ⇠ pdata,

H : x̃1, . . . , x̃n 6⇠ pdata.

To measure the distance between pdata and x̃1, . . . , x̃n we need:

• A generative model p✓ to approximate pdata;

• A measure of distance, we choose maximum mean discrepancy (MMD).

Given a kernel whose feature map is � : X ! H, the MMD between two distributions

P and Q over X is defined as

MMD�(P, Q) = kEX⇠P [�(X)] � EY ⇠Q[�(Y )]kH. (1)

In our the test statistics will be of the form
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Which statistics we should use?

Fisher kernel

�Fisher(x) = I(✓)
�

1
2r log p✓(x). (3)
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• At maximum-likelihood estimate and with no model misspecification:

E[r log p✓(x)] = 0.

• The norm of the second term alone then it is equivalent to the square root of the

score statistic. Due to Occam’s Razor, we decide to use the score statistic directly.

Typicality kernel

�Typicality(x) = log p✓(x), (5)

MMD�Typicality
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• This is equivalent to the typicality test proposed by Nalisnick et al, (2019).

Both statistics are one-sided and can be computed for any di↵erentiable genera-

tive model. We show empirically that these are also independent.

Why combining statistics?

Zhang et al. (2021) proved that in case of single-sample OOD detection there is no test

statistic that is constantly better than all the possible alternatives. We hypothesise

that a combination of multiple statistics should perform better, especially in situations

where one of the statistics fails.

Proposed method

Our method relies on the computation of the p-values for the statistics computed

on x̃1, . . . , x̃n. We relied on a validation set and standard bootstrap resampling

procedure to estimate the distribution of the two statistics under H0.

An optimal way to combine p-values of one-sided independent statistics is the Fisher’s

method:

X2
⇠ �2

kX

j=1

ln(pj).

Technical challenges:

• We use a diagonal approximation for the Fisher Information Matrix I(✓) using the

training set;

• We need to compute per-sample gradients.
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Are the two statistics really independent?

If the statistics are independent and the null hypotheses are accepted, then the

Fisher combination test statistic �2
follows a chi-squared distribution with 2k degrees

of freedom.
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PixelCNN++ trained on FashionMNIST without dropout

Results on single-sample OOD detection

FashionMNIST (in) / MNIST (out)

single statistics combination

models log p(x) kr log p(x)k2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (dropout) 0.0762 0.8709 0.8314 0.8822 0.9369 0.8822

PixelCNN++ (no dropout) 0.1048 0.9532 0.7575 0.9381 0.9536 0.9382

Glow (RMSProp) 0.1970 0.8904 0.4807 0.9114 0.8598 0.8901

Glow (Adam) 0.1223 0.7705 0.6987 0.8745 0.8839 0.8752

HVAE 0.2620 0.8714 0.4884 0.9578 0.9383 0.9498

CIFAR10 (in) / SVHN (out)

single statistics combination

models log p(x) kr log p(x)k2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (model1) 0.1553 0.8006 0.6457 0.6407 0.6826 0.6571

PixelCNN++ (model2) 0.1567 0.7923 0.6498 0.7067 0.7300 0.7243

Glow (RMSProp) 0.0630 0.8585 0.8651 0.7940 0.8683 0.8510

Glow (Adam) 0.0627 0.7844 0.8624 0.7655 0.8613 0.8588

HVAE 0.0636 0.8067 0.8679 0.7335 0.8603 0.8179

CIFAR10 (in) / CIFAR100 (out)

single statistics combination

models log p(x) kr log p(x)k2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (model1) 0.5153 0.5306 0.5458 0.5362 0.5563 0.5477

PixelCNN++ (model2) 0.5150 0.5230 0.5455 0.5325 0.5543 0.5453

Glow (RMSProp) 0.5206 0.5547 0.5507 0.5801 0.5844 0.5842

Glow (Adam) 0.5206 0.5593 0.5508 0.5692 0.5775 0.5767

HVAE 0.5340 0.5280 0.5493 0.5798 0.5879 0.5941

Can we avoid discarding too many inliers?

When we perform OOD detection, we want

to be sure to not discard too many inliers.

Using p-values allows us to use well-studied

techniques for false discovery rate (FDR)

control, i.e. controlling the percentage of

in-distribution data classified as outliers.

We used Benjamini-Hochberg correction

which guarantees that, for a given signif-

icance level ↵, the FDR stays below that

specific level.
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