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1 Approximate inference Our Riemannian Laplace

approximation

: e Laplace samples
p(@) prior
p(0|D) = p(DI6)p(6) posterior

p(D|O)  likelihood p(D)

Bayesian neural network
Computing p(@]D) IS the biggest challenge for Bayesian deep learning

Laplace approximation £(6)

N\

|. Fit a neural network using SGD: O\ap = arg min — log (p(D|0)p(0))

ll. Approximate the posterior distribution by

q(@) — N(@, HMAP, He_l) Several choices for

approximating the Hessian

lll. Compute the predictive distribution as

p(y|x', D) ~ [ p(y|x’, D, 0)q(0)do

. Fit classic Laplace approximation ¢(6) = N(6;6 CH!
p(y|x’, D, bs), 85 ~ q(6) ! icLap pproximation ¢(0) (0; Onar, Hy )
Il. Sample 05 ~ q(0)

Problem Research question and compute initial velocities Vs = Oarap — 0

®The Gaussian distribution does
not take into account the
nonlinear structure of the
posterior;

® Probability mass spreads in low
posterior regions leading to
suboptimal behaviour.

lll. Compute predictive distribution as

p(ylx', D) ~ /p(y|X/>DaH)C](9)d9

p(y|x’, D, Expy,, .. (Vs))

\_ J

Assumption: the loss
surface changes
smoothly wrt to 6

2 How can differential geometry help us?

q(0) N Parametrization of the loss surface

Immersion function 9(9) — [(9, L(@)]

Riemannian metric M(Q) — Jg (H)TJQ ((9)

M(6) = Ik + Vo L(0)VoL(6)"
Parameter space is the
intrinsic coordinates of our manifold
This gives us a notion of a local inner product in the intrinsic
coordinates of the manifold

Using the Riemannian metric to solve exponential maps

Given a metric, we can compute a curve in the intrinsic space by solving the following ODE system

IVP: resultis a
eodesic M~ 1(c OM(c OM (¢ ovec[M(c(t)'] . ,
ctponentat £(0) =~ A0 1o | PAELN) | ORI | - el ae) o et

map

With our metric above, this simplifies to Can be easily compute via automatic

differentiation and using a IVP solver
from scipy

ey V@E(C(t)) ; . I

Exponential map tend to stay in region of the parameter space
that has low loss

4 Experiments

Loqistic Regression

We consider a logistic regressor U(XTé’ + b) on a linearly separable dataset and and the posterior with respect to 6 fixing the optimal b

Confidence LA Confidence Riemannian LA

True posterior LA sample Riemannian LA sample

Regression
We consider a regression problem with DNN, where classic LA is known to perform poorly even if Hessian is not particularly ill-conditioned.
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1-layer NN with 15 hidden units

Neil Lawrence, “Variational Inference in Probabilistic Models”, PhD thesis, 2000
Ritter, Botev, and Barber. A scalable laplace approximation for neural networks. ICLR 2018

Classification

We consider nonlinear classification problems and our method performs better than linearized LA.

vanilla LA linearized LA Riemannian LA

2-layer NN with 16 hidden units per layer MORE EXPERIMENTS AND TABLES IN THE PAPER...

5 Future directions

Directions that open up from this work:

CHECK OUT

& Other Riemannian metrics with different properties can be considered; THE PAPER!

& The proposed metric can be computed efficiently thanks to auto-differentiation techniques. Additional approximations
e.g. KFAC or diagonal Hessian, can make it even faster to compute;

& Tailored-made solvers that exploit the structure and behaviour of our ODE system, i.e. geodesics start from low and
move towards higher loss, can be beneficial for scaling this method to bigger datasets and networks.
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