

Problem Setup

We have access to some accurate numerical solutions from conventional solvers discretised in space and time $x_{1:L} = (x_1, \ldots, x_L) \in \mathbb{R}^{D \times L}$

2 Methodology

a) Tackling variable-length trajectories [1]

b) Sampling full trajectories

At each denoising step, compose local scores to sample the full trajectory

On conditional diffusion models for PDE simulations Aliaksandra Shysheya^{1*}, Cristiana Diaconu^{1*,} Federico Bergamin^{2*,} Paris Perdikaris³, José Miguel Hernández-Lobato¹, Richard E. Turner^{1,3,4}, Emile Mathieu¹

¹University of Cambridge, ²Technical University of Denmark, ³Microsoft AI4Science, ⁴The Alan Turing Institute

2 Methodology (cont'd)

Design space for diffusion-based models

MODEL	SCORE	ROLLOUT	CONDITIONING
Joint AAO [1]	$\mathbf{s}_{\theta}(t, x_{1:L}(t))$	AAO	Guidance
Joint AR (ours)	$\mathbf{s}_{\theta}(t, x_{1:L}(t))$	AR	Guidance
Amortised [2]	$\mathbf{s}_{\theta}(t, x_{1:L}(t), y)$	AR	Architecture
Universal amortised (ours)	$\mathbf{s}_{\theta}(t, x_{1:L}(t), y)$	AR	Architecture/Guidance

c) Conditioning

Joint model $s_{\theta}(t, x_{i-k:i+k}(t))$

 $\nabla \log p(x_{i-k:i+k}(t)|y) \approx \mathbf{s}_{\theta}(t, x_{i-k:i})$ Unconditional

Amortised model $s_{\theta}(t, x_{i-k:i+k}(t), y)$

Plain amortised - fix number of conditioning states at training time [2] Sampling

Training

<u>**Universal amortised</u>** - train over a variety of tasks \implies flexible sampling</u>

Condition amortised models through both the architecture (on previously-generated states) and through reconstruction guidance (on sparse observations) to tackle DA.

The Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS) 2024

$$h_{i+k}(t)) + \nabla \log p(y|x_{i-k:i+k}(t))$$

In model Reconstruction guidance [3]

[3] Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., and Fleet, D. J. Video diffusion models. In Deep Generative Models for Highly Structured Data Workshop, ICLR, volume 10, 2022. [4] Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E. Turner, and Johannes Brandstetter. PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

