On conditional diffusion models for PDE simulations
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1 Problem Setup 2 Methodology (cont’d) 3 Experiments
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_ Y - Amortised diffusion-based models perform on par with MSE-trained baseline, while

offering more flexibility
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2 Methodology o .
Plain amortised - fix number of conditioning states at training time [2] Data assimilation - infer 1.7, from sparse observations

a) Tackling variable-length trajectories [1] KS Kolmogorov
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Universal amortised - train over a variety of tasks =— flexible sampling Conclusions
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1. Diffusion models perform on par with deterministic baselines, but benefit from

more flexibility - the same trained model can tackle forecasting and DA
2. Yet, they underperform compared to SOTA task-specific models [4]
3. Unclear how findings depend on PDE characteristics (time discretisation, data

volume, frequency spectrum, etc.)
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High sparsity: Joint AR and Universal amortised outperform Joint AAO
Low-Moderate sparsity: comparable performance for all methods, but Joint AAO
requires expensive corrector steps

b) Sampling full trajectories
All-at-once (AAO) [1] sampling Autoregressive (AR) sampling Task 1 “
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