Home

Publications

  • "On conditional diffusion models for PDE simulations."
    A. Shysheya*, C. Diaconu*, F. Bergamin*, P. Perdikaris, J.M. Hernández-Lobato, R.E. Turner, E. Mathieu
    To appear in Advances in Neural Information Processing Systems (NeurIPS), 2024
    [ arXiv ] [ Code ]
  • "Riemannian Laplace approximations for Bayesian neural networks."
    F. Bergamin, P. Moreno-Muñoz, S. Hauberg and G. Arvanitidis
    In Advances in Neural Information Processing Systems (NeurIPS), 2023
    [ arXiv ] [ Code ] [ Poster ]
  • "Model-agnostic out-of-distribution detection using combined statistical tests."
    F. Bergamin*, P-A. Mattei*, J.D. Havtorn , H. Senetaire, H. Schmutz, L. Maaløe, S. Hauberg, J. Frellsen
    Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.
    [ arXiv ] [ Code ] [ Poster ]

Workshop papers

  • "Guided Autoregressive Diffusion Models with Applications to PDE Simulation."
    F. Bergamin*, C. Diaconu*, A. Shysheya*, P. Perdikaris, J.M. Hernández-Lobato, R.E. Turner, E. Mathieu
    In Workshop on AI4DifferentialEquations in Science
    AI4DiffEqtnsInSci @ ICLR, 2024
    [ pdf ]

Preprints and working papers

Thesis

  • "Advances in Deep Generative Models, Approximate Inference, and their Applications."
    F. Bergamin
    PhD Thesis, Technical University of Denmark (DTU), 2024
    [ PDF ]