Home
Publications
- "On conditional diffusion models for PDE simulations."
A. Shysheya*, C. Diaconu*, F. Bergamin*, P. Perdikaris, J.M. Hernández-Lobato, R.E. Turner, E. Mathieu
To appear in Advances in Neural Information Processing Systems (NeurIPS), 2024
[ arXiv ] [ Code ]
- "Riemannian Laplace approximations for Bayesian neural networks."
F. Bergamin, P. Moreno-Muñoz, S. Hauberg and G. Arvanitidis
In Advances in Neural Information Processing Systems (NeurIPS), 2023
[ arXiv ] [ Code ] [ Poster ]
- "Model-agnostic out-of-distribution detection using combined statistical tests."
F. Bergamin*, P-A. Mattei*, J.D. Havtorn , H. Senetaire, H. Schmutz, L. Maaløe, S. Hauberg, J. Frellsen
Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.
[ arXiv ] [ Code ] [ Poster ]
Workshop papers
- "Guided Autoregressive Diffusion Models with Applications to PDE Simulation."
F. Bergamin*, C. Diaconu*, A. Shysheya*, P. Perdikaris, J.M. Hernández-Lobato, R.E. Turner, E. Mathieu
In Workshop on AI4DifferentialEquations in Science
AI4DiffEqtnsInSci @ ICLR, 2024
[ pdf ]
Preprints and working papers
Thesis
- "Advances in Deep Generative Models, Approximate Inference, and their Applications."
F. Bergamin
PhD Thesis, Technical University of Denmark (DTU), 2024
[ PDF ]